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Abstract. This paper deals with the optimal scheduling of a one-machine two-product manufacturing 
system with setup, operating in a continuous time dynamic environment. The machine is reliable. 
A known constant setup time is incurred when switching over from a part to the other. Each part 
has specified constant processing time and constant demand rate, as well as an infinite supply of 
raw material. The problem is formulated as a production flow control problem. The objective is 
to minimize the sum of the backlog and inventory costs incurred over a finite planning horizon. 
The global optimal solution, expressed as an optimal feedback control law, provides the optimal 
production rate and setup switching epochs as a function of the state of the system (backlog and 
inventory levels). For the steady-state, the optimal cyclic schedule (Limit Cycle) is determined. This 
is equivalent to solving a one-machine two-product Lot Scheduling Problem. To solve the transient 
case, the system's state space is partitioned into mutually exclusive regions such that with each 
region is associated an optimal control policy. A novel algorithm (Direction Sweeping Algorithm) is 
developed to obtain the optimal state trajectory (optimal policy that minimizes the sum of inventory 
and backlog costs) for this last case. 

Key words: Dynamic setups, setup and production flow control, optimal control. 

1. Introduct ion 

The setup scheduling problem arises in manufacturing systems, where the switch 
over  f rom one product  to another consumes a certain amount  of  t ime or incurs a 
cost. Setup times imply a down time during which there is no production. Cost  may 
be the result of  scrap losses due to testing and tolerance adjustment of  the machine 
for the next  part. 

The  setup scheduling problem has received the attention of  many researchers 
due to its importance,  since almost no manufacturing system is perfectly flexible. 
A special version of  the setup scheduling problem is known as the Economic  Lot  
Scheduling Problem (ELSP).  Elmaghraby (1978) gives a thorough review of  the 
models used for the E L S E  These  models have focused on combinatorial  optimiza- 
tion including mixed integer programming formulations. The typical objective 
reflected in those models,  is to schedule a number  of  jobs with fixed processing 
times on a set of  machines,  so as to minimize some performance measure. The 
latter includes flow time, make span, tardiness, lateness etc. This class of  problems 
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is known to be very difficult to solve (i.e., their computation time grows exponen- 
tially with the size of the problem). Recent research in the field includes the work 
of Dobson (1987), Goyal (1984), and Carreno (1990). The purpose of their effort 
is the scheduling of several products that must be produced on a fixed number 
of identical reliable machines. There is a constant demand for each product, that 
must be fulfilled immediately (i.e., no backlog is allowed). Their objective is to 
minimize the average inventory holding and setup costs per unit time. Gallego 
(1989) extended the ELSP problem to allow backlog. 

The general version of the setup scheduling problem can be formulated as 
a feedback control problem. The latter must respond to random events so as to 
minimize a certain criterion. This kind of formulation is usually classified under 
production flow control models. The first production flow control model was intro- 
duced by Kimemia and Gershwin (1983) in the early 1980s, where they modeled 
the movement of parts as a continuous flow and suggested a feedback control of 
the flow rates of parts through a flexible manufacturing system, in response to 
machine failures so as to closely track the demand of all parts. Gershwin (1994) 
gives a more general framework, where he suggests a hierarchical approach for 
scheduling manufacturing systems. He groups the events from the least frequent 
(at the top level of hierarchy) to the most frequent ones (at the bottom level). If the 
hierarchy levels are well separated (frequency wise), each level can be formulated 
as a continuous flow control problem. 

Using the formalism of Kimemia and Gershwin (1983) and Gershwin (1994), 
Sharifnia et al. (1991) investigated a single machine setup scheduling problem. 
They proposed a feedback setup scheduling policy which uses corridors in the 
surplus (inventory/backlog) space to determine the epochs of setup changes. The 
corridors are chosen so as to guide the surplus trajectory to a target cycle which they 
referred to as the Limit Cycle. Srivatsan and Gershwin (1990) extended the ideas of 
Sharifnia et al. and developed methods for choosing the parameters of the corridors 
when the setup frequencies are not all the same. Caramanis etal. (1991) derived the 
optimality conditions for set-up changes and solved them numerically for a two-part 
type system using a quadratic cost criterion. Hu and Caramanis (1992, 1995) solved 
the three-part type setup problem numerically and deduced structural properties of 
the optimal policies. Based on the numerical results, they proposed near-optimal 
policies. Perkins and Kumar (1989) and Kumar and Seidman (1990) studied the 
performance of distributed real-time setup scheduling policies and investigated the 
conditions under which the system remains stable. Connolly (1992) proposes a 
heuristic for the two-part-type one-machine setup system, based on known results 
from the non-setup system. Her approach is based on a local optimization that 
maximizes the progress toward a target Limit Cycle. Bai and Elhafsi (1993) studied 
the real-time scheduling of an unreliable one-machine two-part-type non-resumable 
setup system. They provide a continuous dynamic programming formulation of 
the problem which they discretize and solve numerically. Based on the numerical 
solution they provide two heuristics to solve the stochastic problem. They also 
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provide necessary and sufficient conditions for demand feasibility and stability 
of the control policies. Gallego (1989) studied the ELSP problem in the case of 
a machine subject to disruptions of small magnitude. He shows that the optimal 
policy selects the production lot sizes as a linear function of the current inventory 
levels. 

In this paper, we study the setup scheduling of a deterministic one-machine two- 
part-type system within a feedback control framework (Kimemia and Gershwin's 
framework). The remainder of the paper is organized as follows: In Section 2, 
we present an optimal control formulation of the setup problem. In Section 3, 
we provide the optimal solution of the problem in steady-state. In Section 4, the 
transient solution is obtained by partitioning the surplus/backlog space into two 
mutually exclusive major regions. In one region the optimal solution is obtained by 
inspection. In the second region an algorithm that gives the optimal state trajectory 
is developed. We conclude our study with Section 5. 

2. Problem Formulation 

We consider a manufacturing system which has a single machine and produces 
two distinct parts (or products). The system should satisfy a constant demand 
rate di (i = 1,2) for each part. The machine incurs a non-zero setup time when 
switching from one product to the other. The setup times (~i (i = 1,2) are given 
constants. Let xi(t) be the production surplus (positive or negative) of Part Type i 
(i = 1,2) at time t; a positive value of xi(t) represents inventory while a negative 
value represents backlog. Here, we follow the general framework introduced by 
Kimemia and Gershwin (1983) and model the production flow as continuous rather 
than discrete. Let ui(t) be the controlled production rate of the machine producing 
Type i parts at time t. Denote by ai(t) the setup state at time t. It is a binary variable 
which is 1 when the machine is ready to produce Type i parts, and 0 otherwise. We 
assume that initially, the machine is not setup to either part type. 

System Dynamics and Constraints: The dynamics of the system can now be 
described by 

d x i ( t ) _ u i ( t ) _ d i ,  i = 1 , 2 ;  (1) 
dt 

O<_ui(t) <_Uiai(t), i =  1,2. (2) 

where Ui is the maximum machine capacity of producing Type i parts. Denote by 
ai,j(t) the transition index which is 1 if the machine is undergoing a setup change 
from Type i to Typej  parts at time t, and 0 otherwise. 

The setup states and the transition indices obey the following set of equations: 

crl(t) n c ~r2(t) + rri,2(t) q- (Y2,1 (t) = 1 (3) 

if~ri,j(t- ) = 1 and t < 6i, then ai,j(t) = 1; (4) 
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if cr i( t -)  = 1 and o'i(t) = 1, then aid(t) = 1; (5) 

if a i , j ( t - )  = 1, t > 5i and cri,j(T)d'r = 5i, then aj(t) = 1; 
5~ 

(6) 

i f  (ri, j ( ~ - )  = 1, t > 6i and cr i , j (T)dT < 6i, then aid(t) = 1. (7) 

i=1,2, j = l , 2 ,  i ¢ j .  
The above equations, (3)-(7), merely state that if cri(t) = 1, we can either 

continue producing Part Type i, or decide to switch production to Part Type j. In 
the latter case we must spend exactly 6j a m o u n t  of  time setting up the machine 
for Part Type j .  That is, ai,j(t) = 1 for exactly 3j amount of  time. After the setup 
change, aj(t) = 1, and the machine is ready to produce Part Type j .  

Penalty Function: The instantaneous cost of  the system at time t, is the sum of  
instantaneous costs of  all part types at time t. The costs for individual part types 
are assumed to be piecewise linear and are given by: 

gi(xi(t)) = c+x+(t) +c~-x~-(t), f o r i  = 1 ,2  (8) 

where c + and c~- are the per unit instantaneous inventory and backlog costs respec- 
tively, and x + (t) = max {xi (t),0} and x~-(t) = max {-xi( t ) ,0}.  The total instantaneous 
cost  is given by 

(9) 

This cost function penalizes the system for over producing (xl > 0, X 2 > 0) or 
under producing (xl < 0, x2 < 0). Notice that, we do not consider setup costs, but 
we do include setup times explicitly in the formulation. 

State Variables and Control Variables: The state variable of  the system is given 
by x(t) = (xl(t), xz(t)). The variables u(t) = (ul(t), uz(t)), and a(t) = (al(t) ,  crz(t)) 
are the control variables. We denote by (a,u) the complete control vector. 

Capacity Set: The capacity set represents the set of  feasible production rates, 
when the setup state is a(t), at time t. It is given by: 

a(a( t ) )  = {u(t)  l 0  < ui(t) <_ Ui, a i ( t ) , i  = 1,2}. (lo) 

Hence, for each setup state we have a different capacity set. These are given 
below: 

a(0,0) 
a(1,0) 
a(o, 1) 

= {u(t )  [ u i ( t ) = 0 ,  i = l , 2 }  

= I = 0 , 0  <__  2(t) _< U2}. 

(11) 
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Setup Constraint Set: The setup constraints set is the set of all possible setup 
vectors a(t) = (al (t), a2(t)) satisfying constraints (3)-(7). Let ® be this set. 

Admissible Control Policies: Let E(e,~2) be the set of feasible controls, which 
depends on O and fL The set of admissible control policies, A, is the set of all 
mappings #, such that: 

# . ~:~2 ___} ~,(~,~, ~ )  

#(x)  ~-+ (a ,u)  (12) 

are piecewise continuously differentiable (e.g., sufficiently smooth). These admis- 
sible control policies are feedback controls that specify the control actions (setup 
and production level of the machine) to be taken, given the state of the system. 

Objective Function: The objective is to find a control policy #* E A, corre- 
sponding to a setup control a* = (a* 1, a*2) and a production flow rate control u* = 
(u* 1, u*2), that minimizes, for each initial state x(t), the following cost function: 

J,(x( t ) , t )  f t f  = 9(x(s))ds (13) 

where the minimization is over all functions #(x(r)) = (a(r), U(T)), such that x('r), 
a ( r )  and u(r)  satisfy constraint (1) and (a(T), u(r)) e E (@,f~) for t < r < tf. 

The cost function can be divided into two components. One is due to a transient 
period and the other is due to a steady-state period. The definitions of the transient 
and steady-state periods will be given in the next section. We will also show in 
the next section, that once at the steady-state, the system follows an optimal cyclic 
schedule (called the Limit Cycle) in the state space. That is, starting with the 
machine setup for Part Type i (i= 1,2), the machine commences to produce this Part 
Type at maximum machine capacity. After ti amount of time, the machine stops 
producing, and a setup for Part Type j  (j = 1,2,j  ~ i) is initiated. Once the setup 
is completed, production of Part Type j begins. After t2 amount of time, we stop 
the machine, and start a setup change for Part Type i. At the end of the setup, the 
system is in the state it started from at the beginning of the cycle. This procedure 
will repeat itself, until the end of the planning horizon. 

Let ts be the time instant, the system reaches the steady-state. The total cost can 
then be written as 

jft t s flt l f J~(x(t),t) = g(x(8))ds + g(x(s))ds 

= JT(x(t) , t )  + (tf -- ts)J~(x(ts)ts). 

We refer to fl~(x(t),t) as the transient cost, 

JT(x(t) , t )  ftts = g(x(s))ds 

(14) 

(15) 
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and J~ (x(ts), ts) as the average steady-state cost, 

1 ft~J" J~(x( ts ) ,  ts) - t f  - ts g (x (s ) )ds  (16) 

Here, we assume that (tf - t ) ,  the planning horizon, is long enough, so that the 
system reaches the steady-state and stays there for a long period. Also, we assume 
that the demand set {dl,d2} is feasible. That is, Ui > dl + d2 for i = 1,2 (see Bai and 
Elhafsi (1993), for necessary and sufficient conditions for demand feasibility). 

3. Steady-State Solution 

If the machine were perfectly flexible (i.e., with zero setup change times), the 
production surplus can be kept at the zero level. That is, it would be optimal to 
produce both parts simultaneously at the demand rates. Therefore, if the setup 
times are negligible, the steady-state solution is very simple and easy to get. 
Unfortunately, the steady-state solution is not that easy, when the machine is not 
flexible (i.e. incurs a nonzero setup time before switching to the other part type). 
The main difficulty is that it is not possible to produce both part types at the same 
time. Thus, the surplus vector cannot be kept at a constant level and therefore 
must follow a cyclic schedule. Sharifnia et al. (1991) suggest corridor policies to 
schedule the timing of the setup changes and their frequencies. They show that if 
the horizon is long enough, and by choosing the appropriate corridors, the surplus 
levels converge to a cycle, in which parts are produced according to a round robin 
sequence. They refer to this cycle as the Limit Cycle, since the latter is reached 
asymptotically. In the remainder of this papel, we will refer to the steady-state 
solution as the Limit Cycle and vice versa. A formal definition of the steady-state 
for our problem is given as follows: 

DEFINITION 3.1. We say that the system has reached a steady-state, when the 
surplus levels touch the Limit Cycle at a point where it would be possible for 
the surplus of both parts to stay on the Limit Cycle. The steady-state solution is 
completely characterized when the optimal location of the Limit Cycle is known. 
As can be seen in the next subsection, determining the Limit Cycle is equivalent 
to solving a one-machine two-part-type LSP problem, since we ignore setup costs. 
Lot sizes are induced in the model by the explicit presence of setup times. 

3.1. OPTIMAL LOCATION OF THE LIMIT CYCLE 

In the steady-state, the average cost can be written as follows: 

- t l  - 



MANUFACTURING SYSTEM WITH SETUP CHANGES 355 

o d 
I 

81 
8 

I 
x2 

& c 

A 

V sl 
B 

Fig. 1. Location of the limit cycle in x-space. 

/n ) _ 1 ~ r ~ = ,  g ( x ( s ) d s  + g ( x ( s ) ) d s  
?2T -1)T  T 

N I ~ o T  l ~ S s  
- T + g( (s))d8 (17) 

where T is the time duration of the Limit Cycle and nT  < t f  - ts < (n + 1)T (n a 
positive integer). The second term in (17) can be neglected, since we assumed that 
tf - ts is large enough (thus n is large) so that the system stays on the Limit Cycle 
for a long time. It is clear from (17) that, minimizing the total average steady-state 
cost is equivalent to minimizing the average cost over the Limit Cycle. This, we 
use as our criterion for the steady-state solution. 

If the system is heavily loaded, that is, the demand level is close to the system 
capacity (see Elhafsi and Bai (1995) for more details), it can be shown that the 
Limit Cycle has the shape shown in Figure 1. The location of the Limit Cycle is 
defined by four points A, B, C, and D, in x-space. Notice that in Figure l, starting at 
any point on the Limit Cycle, we always come back to the same point, after exactly 
one cycle. For example, if we started at point A, the cycle would be to set up the 
machine for Part Type 2, produce Part Type 2, set up the machine for Part Type 1, 
and then produce Part Type 1 until the surplus vector reaches A. This observation 
leads to the following fact: 

FACT 3.1. starting at a point P on the Limit Cycle, to be able to come back to the 
same point, the amount of surplus generated during the production of either part 
type should be equal to that lost during times when we do not produce that part 
type. In other words the surplus generated during one Limit Cycle should be equal 
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to zero for either part type. The steady-state solution is based on Fact 3.1. Before 
proceeding with the solution we need the following additional notation: 

For Part Type i (i = 1,2): 
ti time spent in Setup i over the Limit Cycle (i.e., producing Part Type i). 
T length of the Limit Cycle (T= q + t2 + 61 + 62). 

Si maximum surplus level. 
si minimum surplus level. 
qi replenishment quantity (qi = Si - si). 

Based on Fact 3.1 and assuming that the production rates are constant over the 
Limit Cycle (we will show that this assumption holds indeed), we can write the 
following balance equations: where ti ( i = 1,2) is the time spent in setup i and Tis 
the length of the Limit Cycle. Note that the equations hold only if ui >_ dl + d2, (i 
= 1,2), After rearranging we have 

(Ul - d l ) t l  - d l t2  = (61 + 62)d i  

- d 2 t l  + ('0,2 - d 2 ) t 2  = (61 + ~2)d2, 

Solving the above system of linear equations for tl and t2, we get 

u 2 d l  
tl = (61 + 62), (18) 

UlU2 --  u l d 2  - -  u 2 d l  

t2 = (61 + 62). (19) 
U l U 2  - -  u l d 2  - u 2 d l  

and T is given by: 

~r' ~_. '/flU2 (61 q-- 62) (20 )  
q/l~Z2 --  ~Zld2 --  ~ 2 d l  

The above expressions were also obtained in Bai and Elhafsi (1993) (when ui = 
Ui, for i = 1,2), as limits of the transient cycles. Also, It has been shown in Bai and 
Elhafsi (1993) that if the demand set {dl, d2} is feasible, then (U1 - dl) (U2 - d2) 
> did2 which guarantees that the denominator in the expressions of tl, t2, and T, is 
strictly positive. We will show later that ui has to be in {0, Ui }, i = 1,2, to minimize 
the cost of operating according to the Limit Cycle. 

To be able to compute the average cost incurred over the Limit Cycle, we use the 
techniques of Sivazlian and Stanfel (1975). That is, we convert the inventory system 
with finite production rates and finite setup times to a system with instantaneous 
replenishment quantities. We first calculate the inventory and backlog costs incurred 
by each Part Type separately. The total cost incurred over the Limit Cycle is the 
sum of the costs incurred individually by each Part Type. Notice here that we start 
the Limit Cycle at point D (see Figure 1). It is clear that the unknowns are &, $2 (the 
maximum surplus levels), sl and S 2 (the minimum surplus levels), and that qi = Si - 
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si, is the instantaneous replenishment quantity for Part Type i. Before calculating 
the cost of operating the system over the period of length T, we introduce the 
quantity d~ which is computed as follows: 

qi ~- Si - si -- Td~ = ti(ui - di), (21) 

substituting tl and T by their expressions above and solving for d~, we get 

d~ -- di(1 - di /ui) .  (22) 

Let "ri denote the total amount of time inventory costs are incurred, and let "r~ be the 
total amount of time backlog or shortage costs are incurred. The average inventory 
cost of Part Type i is then given by 

si i- 2 ] 

The average backlog cost of Part Type i is given by 

Ci- f T ( s i  --  d:t)dt _ c.~ ( S i ( T _ T i ) _  l d : ( T 2 _  T~)) (24) - 

The total cost of inventory and shortage (over a Limit Cycle) of Part Type i, 
Fi(Si,ri), is then given by: 

Noticing that T i = Si /d~,  and substituting for "ri, we get 

1 1 S2i (c + + c~) + icT~di T - Sic.~. (26) Fi(Si)  - 2 Td~ 

The total inventory and shortage cost over the Limit Cycle, F(S1,S2), is given by 

= ~i=lFi(Si ) ,  F(S, ,  S2) 2 

$1 and $2 are the values that minimize the total Limit Cycle average cost F(S1,S2). 
This is an unconstrained optimization problem, and the function F(S1,S2) is a 
separable function of S1 and $2. Thus, minimizing F(S1,S2) with respect to S1 and 
Sz, is equivalent to minimizing FI(S1) with respect to S1, and minimizing F2($2) 
with respect to $2 separately. The minimum of Fi(Si) (i = 1,2) is obtained for 

c~- , 

c~ + c + 
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using (22), notice that 

qi = (Si - si) = Td~ = ~z1722 
UlU2 -- uld2 - u2d(  d i ' l  ( d i /u i ) (~l  + ,~2) 

(1 - di /u i )  
e* q i = 1 - -d l T ~  : -d22 / u 2 d i ( (~ l -t- ~2) .  

Hence, 

(27) 

S i  _ c ~  c[  + c  +qi'  f o r i = l , 2 .  (28) 

To verify that Si, given above, is the minimum we compute the second derivative 
of the cost function Fi(Si), which is given below 

dZFi(Si)  _ c + + c-( (29) 
dS~ qi 

which is clearly positive, and therefore Si is a global minimum. 
The minimum surplus level si can be easily obtained from the expression q~ = 

Si - si, and is given as follows: 

_ c  + 
si -- ci- d- c + qi, for i = 1, 2. (30) 

The total average cost over the Limit Cycle is then 

F(S1 ,  $2) -- 2c-{ + ¢ t  ql d- -~e 2 + c+q2. (31) 

Note that the total average cost is implicitly a function of the production rates Ul 
and u2. Now, we have to choose ul and u2, so as to minimize the total average cost. 
For this, we differentiate the cost function F(S~,S2) = F(ul,u2) with respect to Ul 
and u2. Doing so, we obtain the following: 

OF 
Oul 

OF 

Ou2 

Oqi 
Oui 

O q j _  

Oui 

1 c7~+ Oq, + 1 ~;~+ Oq2 
2(c  1 + c~-) oul 2(c  2 + c+) Oul ' 

1 c-~c t Oql 1 c~ c + Oq2 
2 (~? + ~*~) 0~  + 2 (~; + ~+~) 0 ~ '  

-(61 + 62) dj d~ 
< 0, f o r / =  1 ,2 , j  = 1 , 2 a n d i  7~j; 

(1 - d l / ~ l  - d 2 / ~ 2 )  2 ~ j  ~ 
- - ( ~ 1 + ~ 2 ) . .  d i ( 1 -  d j / u j )  d-~j2 <O,  f o r i =  l , 2 , j =  l , 2  

(1 - -  d l / • l  - d 2 / u 2 )  ~ °  u i 

a n d ' / ¢ - j .  
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The gradient of F(ul  ,u2) is strictly negative. Hence, the minimum cost is obtained 
by setting Ul and u2 to their maximum values, U1 and U2 respectively. 

The optimal location of the Limit Cycle is then given by: 

82 q- t~2d2 ' 82 ] $2 ] and 

D = $2  - 61d2 " 

Where 

Si  = C i  c ~ - + c  + qi' f o r i = l , 2 ;  (33) 

s i -  c~-+c------~ +qi '  f o r / =  1,2; (34) 

qi = di(1 - d j U i ) ( 6 1  + 62)/(1 - dl /U1 - d2/U2),  for i = 1,2. (35) 

and 

tl ----- (61 + ~2)d l /U1 / (1  - d l /U1  - d2/U2); (36) 

t2 = (61 + 62)d2/U2/(1  - d l /U1  - d2/U2); (37) 

T - (61 + 62)/(1 - dl /U1 -- d2/U2).  (38) 

In this section, we determined the optimal location of the Limit Cycle by converting 
the problem to a LSP problem. The optimal location of the Limit Cycle corresponds 
to an optimal cyclic schedule of the two parts in the system's state space. In the 
next section, we give the transient solution of the problem. 

4. Transient Solution 

In this section, we will determine the optimal transient solution of our problem. 
This corresponds to finding optimal trajectories that lead to the Limit Cycle (or 
steady-state). First, we define what we call a transient and an optimal transient 
solution. 

DEFINITION 4.1. A transient solution is defined as a trajectory in the x-space (or 
surplus space) emanating from an initial point and reaching the steady-state (i.e., 
the Limit Cycle) in a finite amount of time. 
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DEFINITION 4.2. An optimal transient solution is a transient solution that mini- 
mizes the cost of reaching the steady-state. That is, among all transient trajectories 
that lead to the Limit Cycle, it is the one that gives the minimum cost. 

REMARK. In previous research work of this type (see Sharifnia et al. (1991)), 
the Limit Cycle has been usually assumed to be reachable asymptotically (see 
Figure 1). However, based on the evidence from the numerical solution to this 
problem (finite horizon discrete dynamic programming version of this problem), 
we believe that the Limit Cycle should be finite-time reachable for the system 
under consideration. In the definitions above, we assume that the Limit Cycle has 
to be reached in finite time. 

Our problem is to find such optimal transient solution for every initial point in 
the surplus space. The transient solution to our problem is based on the following 
theorem and the subsequent facts. 

THEOREM 4.1. The optimal production rate vector u* = (u*l,u*2) belongs to the 
finite set of vectors f~* = {(0,0),(U1,0),(dl,0),(0,Uz),(0,d2)}. 

Proof. The proof is based on the Bellman equation. The latter has been derived 
in Gershwin (1994) for a flexible multiple part system. In our case, the Bellman 
equation, assuming that jT  (the transient cost component) is differentiable in x and 
t, is given by: 

0 jT(x  ' t) = 
at 

rain { g ( x ) +  O-~iJT(x, t ) (ul-dl)  + - O J T ( x , t ) ( u 2 -  d2)} .  
#,uEE(~,,a) Ox2 

It is clear that when the machine is undergoing a setup change for a Part Type, there 
is no decision to make and (u* 1,u'2) is forced to be equal to (0,0). Now assume that 
we know the optimal setup state of the machine. Let a = (1,0) be this setup state. 
That is, the machine can produce Part Type 1. In this case the Bellman equation 
can be rewritten as follows: 

-~t JT (x, t) = 

roan {g(x) T O@lJT(x,t)(~l -dl) + O-~2JT(x,t)(u2-d2)} 
uen(I,o) 

Now, notice that at each time instant t, if we knew JT(x,t), we would solve a linear 
programming problem, for which Ul and u2 are the decision variables, 0 JT/0 xl 
and 0 jT /0  x2 are the cost coefficients and f~(1,0) is the constraint set. f~(1,0) = 
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{(Ul'U2) I 0 <~ Ul ~ UI,U2 = 0} is a c o n v e x  set. W e  k n o w  that  the  so lu t ion  o f  the  
above linear programming problem is always at an extreme point of the constraint 
set f~(1,0), that is (U*l,U*2) is either equal to (0,0) (if 0 f f /O Xl > 0), or equal to 
(UI,0) (if 0 f f /O xt < 0). Furthermore the solution is unique, if the cost coefficient 
0 JT/o Xl is non-zero. In the case a JT/O Xl = 0, the solution is not unique anymore, 
since any solution (U*l,U*2) will not affect the objective function of the linear 
programming problem at time instant t. However, to keep the cost coefficient 0 
JT/o xl equal to zero at time instant t + ~t, we should produce Part Type 1 at the 
demand rate dl so as to minimize the rate of increase of the cost function jT. In 
this case (U*l,U*2) is equal to (dl,0). A similar argument is used when the optimal 
setup state is ~r - (0,l). • 

The linear programming problem above, has also another very important conse- 
quence, which we state in the following fact. 

FACT 4.1. Since the cost coefficients in the Bellman equation are functions of x, 
given an optimal choice a*(t <_ ~- <_ ts), the linear programming problem above 
suggests a partition of the x-space into mutually exclusive regions (see Gershwin 
1994). Each region corresponds to an optimal setup state a* = (o- '1 ,o- '2)  , and 
an optimal production rate u* = (u*l,u*2) which belongs to the set ~*, defined 
above. 

Another important fact drawn from the Bellman equation is given as follows: 
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FACT 4.2. It has been shown in Connolly (1992) that f r ,  the cost function, does 
not depend explicitly on the time, for the flexible two-part case. She also showed 
that jT  is piecewise quadratic and therefore the cost coefficients of the Bellman 
equation are linear in x. The latter implies that the boundaries of the regions in 
x-space must be linear (see Gershwin 1994). These observations are still valid in 
our case for an optimal choice of or. In other words, suppose that we know how to 
choose ~7 optimally, then for each such a choice, the cost function is not an explicit 
function of time and is piecewise quadratic in x. Therefore, the boundaries of the 
regions in the surplus space must be linear. Of course in our case (as opposed to the 
non-setup case), this x-space partition is more complicated by the choice of e. 

For the subsequent analysis, the following important quantities need to be defined. 
First we need to find analytic expressions for the equations of line (A,D), line (B,C), 
line parallel to (A,D) containing Point C and the line parallel to (B,C) containing 
Point A (see Figure 2). These line equations are easy to find, since we know the 
coordinates of the points A, B, C, and D (from the steady-state optimal solution). 
These are given below. 

Line (A,D) : d z t l ( Z  1 - S1) + ql(z2 - -  8 2  - -  ~2d2) -= 0. (39) 

Line (B,C) : q2(zl - Sl - ~ldl) -4- dlt2(;c2 - -  $ 2 )  -~- 0 .  (40) 

Line parallel to (A,D) containing C: d2tl (zl - 81 - al dl) + ql (z2 - $2) = 0. (41 ) 

Line parallel to (B,C) containing A : q2 (z 1 - El ) + d l  t 2  (~c2  - 8 2  - ~ 2 d 2 )  = 0. (42) 

We will refer to line (A,D) as Line L1, line (B,C) as Line L2, line parallel to (A,D) 
containing C as Line L21, and line parallel to (B,C) containing A as Line L 12 (see 
Figure 2). 
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Having the equations of Lines L1 and L2, we can easily find the coordinates 
of the intersection point I, which is also of importance in the subsequent analysis. 
Intersection Point I is given by (after some manipulations): 

i l)  (Clql/(C 1 + e+l ) -- ~2ql / (~l  + ~2)~ 
I = = + + (43) 

Notice that intersection Point I can be located in any quadrant of the surplus space, 
depending on the values of the penalty function coefficients and the setup time 
duration. 

Without loss of generality we index the parts such that Part Type 1 is the part 
type with the larger setup time. To solve the transient problem we divide the surplus 
space into two major mutually exclusive Regions ~R ~' and ~R ° defined as follows: 
~R u is the region in x-space located bellow the Lines L12 and L21. ~R u is the region 
in x-space located above the Lines L12 and L21 (see Figure 3). Algebraically, 

N O 

{(Xl,X2) [ q2(xl - S1) + d l t 2 ( x 2  - s 2  - 52d2) 

< 0;d2tl(Zl - 81 - ~ldl) + ql(x2 - ~2) < 0}; 

{(Zl, :/;2) I q2( xl -- Sl) + d l t 2 ( z 2  - s 2  - 52d2) 

;> O;d2tl(:/;1 - 81 - dldl) + ql(z2 - $2) 3> 0}. 

We divide the analysis into two parts. In the first part, we find the optimal transient 
solution for all initial surplus levels in region ~R o. In the second part, we do the 
same for all initial surplus levels in Region N ~ 

4.1. OPTIMAL TRANSIENT SOLUTION IN REGION N ° 

As mentioned above, our task is to bring the initial surplus levels in x-space to 
a point on the Limit Cycle. Because, once on the Limit Cycle, the surplus will 
behave according to it thereafter (since the machine is reliable), and we know that 
operating according to the Limit Cycle is optimal (from the steady-state solution). 
The solution approach for initial surplus levels in Region ~R ° is based on inspection 
and intuition. However, it is easy to see that the solution is indeed optimal. For 
instance, from Theorem 4.1 and Fact 4.1, we know that the optimal production 
rates are piecewise constant and are selected from a very small set. Hence, from 
the system dynamics (differential equations (1)), it is easy to verify that the optimal 
trajectories in x-space are piecewise linear and therefore it would not be difficult 
to see that they are indeed optimal. 

We will provide a detailed solution for the case where Intersection Point I is 
located in the first quadrant (see Figure 2). The positive location of Intersection 
Point I may be the most common in practice. It has been reported in the literature 
that the backlog and inventory costs, c - i  and c + i  (i = 1,2), are usually chosen at 
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least in the ratio of 5 to 1 (because backlog usually results in sales and customers 
good will losses and other undesirable effects). The setup times ~i (i = 1,2) are 
of the same order of magnitude. Hence from the expression of the coordinates of 
Intersection Point I in (42), we have 

Cz/(C z "~- C~) > 5j/(~l -~- ~2) for /  -=- 1 ,2 ; j  = 1 , 2 a n d j  ¢ i .  

Hence, il and i2 are positive numbers. In any case, the solution procedure is exactly 
the same for Intersection Point I located in any other quadrant. 

Throughout this paper, we assume that initially the machine is not setup to 
either part type. For initial surplus levels in Region ~o, we can state our problem 
as follows: Subject to constraints (1)-(7), f ind an optimal trajectory (i.e., with 
minimum cost) emanating from an initial point x(t) E ~o in x-space and reaching 
the Limit Cycle at a point x(ts), where it would be possible to move according to it 
thereafter. 

To determine the optimal solution for initial surplus levels in Region ~o, we 
first partition Region ~o into three mutually exclusive regions G, G1, and G2 by 
introducing two linear boundaries LG1 and LG2. Line LG1 is the line for which 
the surplus level of Part Type 1 is exactly equal to d151 and Line LG2 is the line 
for which the surplus level of Part Type 2 is exactly equal to d2~2. Then, we further 
partition Region G into eight mutually exclusive regions G11, G12, G21, G22, 
H l l ,  H12, H21, and H22. Figures 4 and 5 show the partition of Region ~o and G 
respectively. These regions are defined as follows: 

G l l  -- {(xl ,x2)  [ x l - (~ ld l  ~>0;-d2(xl--81-51dl)+dl(x2-S2) >0};  
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Fig. 5. Partition of Region G. 

G12 = {(xl,x2) {d2(x l - s l -51dl ) -d l (x2-S~)  > O; -d2(x l - i l )  

+dl ( x 2 - h )  _> O; q2 (x l -S1)+d l t2 (x2- s2 -~2d2)  >0}; 

G21 =- {(Xl, X2) ]-- 'd2(Xl-S1)q--dl(X2-,92-~2d2) > 0 ; d 2 ( x l  - i l )  

-'dl (x 2 - i 2 )  > 0; dztt (Xl - - s1 -61d l )+q l  (x2 --$2) > 0}; 

G22 = {(x,,x2) ]x2-agd2>O;d2(xl-Sj)-dl(x2-s2-62d2) > 0}; 

H l l  = {(Xl ,X2)  [ d2(x l -S l -a ld l ) -d l ( x2 -S2)  > O;xl-a,d, _>0; 

-q2 (xl - $1 ) - dl t2 (X2 -- 82 -- ~2d2) _> 0; -d2 (Xl -o011 ) 

-~l(x2-g12) >_0}; 
H12 = {(xl,x2) } d2(x l -911) -d l (x2-g12)  > 0 ; d a t l ( x l - s l - 5 1 d ~ )  

-~l (x2 -  82) _> 0;-q2(Xl-S1)-dl t2(x2-82-~52d2) ~0};  

H21 = {(x~,x2) J q2(xl -S2)+d~t2(x2-s2-a2d2) _>0;d2(xj - i~)  

--dl(xz-i2)  > 0;--d2tl(x I - S l - 6 1 d l ) - q l ( x 2 - S 2  ) > 0; 

-xJ2 (xl --g21) -?dl (X2 --g22) ~> 0}; 

H22 = {(Xl, X2) [ --~2(Xl - S I ) + d l  (x2 - 8 2 - ~ 2 d 2 )  > 0; X 2 -62d2 ~ 0; 
~2t~ (xl -s1-6~di)  -qt (x2-&)  > 0;-d2 (x ~ -02t) 
+dl (x2-g22)  > 0}; 

G1 = {(x~,x2) I-w1 +5~dl > O;d2tl(xz-sl--5IdI)+ql(x2-,5'2) >0}; 

G2 = {(Xl, x2) I -~2~52d2  > 0 ;q2(x l -S1) -+-d l t2 (*2-s2 -~Sed2)  > 0 } .  

Where, gl = (gll,gl2) T is the point in x-space given by: 

{ gll = ~l&; 
gt2 = $2 + sld2tl/ql. 
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g2 = (g21 ,g22)  T is the point in x-space given by: 

921 = S I  q- s2dlt2/q2; 
922 = ~2d2. 

And I = (il ,i2) T is the point in z-space given by (42). 
In the following, we provide the optimal transient solution for each of the 

aforementioned regions. 

4.1.1. Initial Surplus Levels in Region G 

In this case, both surplus levels are positive. Therefore, the production is ahead of 
the demand for both parts and it is optimal to let the surplus levels deplete at the 
maximum possible rate. That is, we set the production rates to zero. However we 
also want to reach the Limit Cycle as quickly as possible. Hence, we need to decide 
which setup we must change the machine to, and when is the best time to do it. We 
answer this question by considering each sub-region of Region G separately. 

Initial surplus in Region Gl1: The optimal trajectory is obtained by first setting 
the production rates to zero. This corresponds to a trajectory moving downward in 
the southwest direction with speed ( - d l ,  -d2) .  When the surplus of Part Type 1 
reaches the level 6I d2 (that is the trajectory hits Line LG1), we immediately start a 
setup change for Part Type 1. When the setup change is finished, the surplus level 
of Part Type 1 is exactly 0. That of Part Type 2 is still positive and we still have 
not reached the Limit Cycle. Therefore, we need to decrease the surplus level of 
Part Type 2 and keep the surplus level of Part Type 1 at the zero level until we 
touch the Limit Cycle. The optimal way to do this, is to produce Part Type 1 at 
the demand rate dl (see Theorem 4.1). This corresponds to a trajectory moving 
downward along the x2 axis with a speed (0,-d2) until the Limit Cycle is touched 
at point D ~. 

Initial surplus in Region G12: The optimal trajectory is obtained by setting the 
production rates to zero, until the surplus trajectory touches the boundary of Region 
G12 on Line L12. At this point, we immediately start a setup change to Part Type 
2. At the end of the setup change the trajectory touches the Limit Cycle at a point 
on the Segment [I,C]. 

Initial surplus in Region G21: The optimal trajectory is obtained by setting the 
production rates to zero, until the surplus trajectory touches the boundary of Region 
G21 on Line L21. At this point, we immediately start a setup change to Part Type 
1. At the end of the setup change the trajectory touches the Limit Cycle at a point 
on the Segment [I,A]. 

Initial surplus in Region G22: The optimal trajectory is obtained by setting the 
production rates to zero, until the surplus of Part Type 2 reaches the level 32d2 (that 
is the trajectory hits Line LG2). At this point, we immediately start a setup change 
for Part Type 2. At the end of the setup change, the surplus level of Part Type 2 
is exactly zero, that of Part Type 1 is still positive and we still have not reached 
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the Limit Cycle. Therefore, we need to decrease the surplus level of Part Type 1 
and keep the surplus level of Part Type 2 at the zero level until we touch the Limit 
Cycle. To do this, we produce Part Type 2 at the demand rate d2. This corresponds 
to a trajectory moving along the Xl axis with a speed (-dl ,0) ,  until the Limit Cycle 
is touched at point B ~. 

Initial surplus levels in Region Hl1: Trajectories emanating in Region HI 1 are 
similar to 

Initial 
similar to 

Initial 
similar to 

Init•l 
similar to 

those emanating in Region G11. 
surplus levels in Region H12: Trajectories emanating in Region H12 are 
those emanating in Region G21. 
surplus levels in Region H21: Trajectories emanating in Region H21 are 
those emanating in Region G12. 
surplus levels in Region H22: Trajectories emanating in Region H22 are 
those emanating in Region G22. 

4.1.2. Initial Surplus Levels in Region G1 

Notice that for initial points in this region, the surplus level of Part Type 2 is always 
positive and the surplus level of Part Type 1 is less than 31dl. Therefore, we need 
to produce Part Type 1 so that we can reach the Limit Cycle. Now, suppose that 
the surplus level of Part Type 1 is positive. In this case, even if we started a setup 
change to Part Type 1, we would end up with a backlog of Part Type 1, since 
during the setup change to Part Type 1, 31 dl amount of Part Type 1 is depleted. The 
optimal trajectories emanating from Region G1 and leading to the Limit Cycle are 
obtained as follows: First we start a setup change to Part Type 1. When the setup 
change is completed, xl is negative and x2 is positive. Hence we produce Part Type 
1 at the maximum production rate to eliminate the backlog of Part Type 1. This 
corresponds to a trajectory moving southeast with a speed of (U1 - d l ,  -d2). When 
the surplus level of Part Type 1 becomes zero, that of Part Type 2 is still positive 
(that is the point where the trajectory hits the xz axis), and we still have not reached 
the Limit Cycle. Therefore, we need to decrease the surplus level of Part Type 2 
and keep the surplus of Part Type 1 at the zero level until we touch the Limit Cycle. 
The optimal way to do this is to produce Part Type 1 at the demand rate dl (see 
Theorem 4.1). This corresponds to a trajectory moving downward along the x2 axis 
with a speed (0,-d2), until the Limit Cycle is touched at Point D r. 

4.1.3. Initial Surplus Levels in Region G2 

For all initial points in this region, the surplus level of Part Type 1 is always positive 
and the surplus level of Part Type 2 is less than ~2d2. This is the symmetric case 
of points in region G1. That is, the optimal way to get to the Limit Cycle is to 
set up the machine for Part Type 2 first, produce Part Type 2 at the maximum 
production rate until its surplus level becomes zero. At this point, change the level 
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of production of Part Type 2 to d2 parts per time unit and continue producing this 
part until the trajectory touches the Limit Cycle at the point B'. 

To summarize the control actions in Region N o, let x = (a,b) be the vector of 
initial surplus levels in Region N o. Then, 

I f x E  GI: 
!: Set up the machine for Part Type 1; 
2: After the setup change, produce Part Type 1 at the rate U1; 
3: When the surplus level of Part Type 1 becomes 0, change the production 

rate to dl; 
4: When the surplus level of Part Type 2 becomes X2D, = d2tlS1/ql + s2 + 

~2d2 (point D I in Figure 5), switch to the control actions of the Limit Cycle. 
If x E Gl l  U Hl l :  

1: Do not produce either part type; 
2: When the surplus level of Part Type 1 becomes 51dl, start a setup change 

for Part Type 1; 
3: After the setup change, produce Part Type 1 at the demand rate dl; 
4: When the surplus level of Part Type 2 becomes X2D, = d2tlS1/ql + s2 + 

52d2, switch to the control actions of the Limit Cycle. 
If x E G12 U H21: 

1: Do not produce either part type; 
2: When the surplus level of Part Type 2 reaches level/2, immediately start 

a setup change for Part Type 2./2 is the surplus level of Part Type 2, when 
the trajectory hits Line L12 and is given by 

12 ---- (bdl + (S1 -- a)d2)q2 -q- dld2t2(s2 + 52d2) 
dl (q2+t2d2)  

3: at the end of the setup change switch to the Limit Cycle control actions. 
If x E G21 U H12: 

1: Do not produce either part type; 
2: When the surplus level of Part Type 1 reaches the level 11, immediately 

start a setup change for Part Type 1. ll is the surplus level of Part Type 1, 
when the trajectory hits Line L21 and is given by 

Ii = (ad2 + ($2 - b)dl)ql + dld2t l (s l  + 51dl) 

d 2 ( q l T t l d l )  

3: at the end of the setup change switch to the Limit Cycle control actions. 
If x C G22 tA H22: 

1 : Do not produce either part type; 
2: When the surplus level of Part Type 2 becomes ~2d2, start a setup change 

for Part Type 2; 
3: After the setup change, produce Part Type 2 at the demand rate d2; 
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Fig. 6. Illustration of Fact 4.3 and Fact 4.4. 

4: When the surplus level of Part Type 1 becomes X 1 B ,  = dlS2/q2 + Sl + (~ldl 
(point B r in Figure 5), switch to the control actions of the Limit Cycle. 

If x C G2: 
1: Set up the machine for Part Type 2; 
2" After the setup change, produce Part Type 2 at the rate U2; 
3: When the surplus level of Part Type 2 becomes 0, change the production 

rate to d2; 
4: When the surplus level of Part Type 1 becomes XlB' = dlt2SE/q2 + Sl + 

(~ldl, switch to the control actions of the Limit Cycle. 
Notice that, all optimal trajectories emanating in Region ~ o reach the Limit 

Cycle by moving downward and that only one setup change to either part type is 
performed before the Limit Cycle is reached. In other words, for initial points in 
Region ~ o, the Limit Cycle is always reached from above and with only one setup 
change. 

4.2. OPTIMAL TRANSIENT SOLUTION IN REGION ~u 

In this subsection, we will develop an algorithm to obtain the optimal trajectories 
emanating in Region ~u and reaching the Limit Cycle in finite time. But before we 
proceed with the algorithm, we establish the following facts and definitions. 
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In the previous subsection, we showed that for initial surplus levels in Region 
~R o, the Limit Cycle is always reached in finite time, from above, with only one 
setup change. For initial surplus levels in Region ~R u, if we immediately started 
a setup change to a part, at the end of the setup change, we would miss either 
Segment [A,D] if we setup for Part Type 1, or Segment [B,C] if we setup for Part 
Type 2 (which are the target segments for the surplus to stay on the Limit Cycle). 
To bring the surplus levels to either Segment [A,D] or [B,C] in finite time, we 
need to generate a surplus excess for the part type the machine is set up for, so that 
when we switch to the production of the other part type, we end up on or above 
the appropriate segment of the Limit Cycle. Now, after the setup change, we need 
to produce the part type we set up the machine for. Based on Theorem 4.1, we can 
set the production rate to zero, the demand rate, or maximum machine capacity. It 
is clear that, if we set the production rate to zero, both surplus levels deplete and 
the generated trajectory moves in the direction ( -d l ,  -d2) and hence further drifts 
away from the Limit Cycle (see Figure 6). If we produced at the demand rate the 
part type the machine is setup for, we would keep the surplus level of this part 
type constant, while the surplus of the other part type depletes. In this case, the 
generated trajectory will move parallel to one of the axis in x-space in the direction 
that further drifts away from the Limit Cycle (see Figure 7). If we produced at 
maximum machine capacity the part type the machine is set up for, the surplus 
level of this part type increases, that of the other part type decreases. This way 
it is possible to generate an excess surplus for the part type being produced. The 
following fact formally states this result. 

FACT 4.3. For initial surplus levels in Region ~ u, the only way to progress toward 
the Limit Cycle is by producing at maximum machine capacity whenever it is 
possible. 

Based on Fact 4.3, the trajectories emanating in Region ~u, either move along 
direction ( - d l ,  -d2)  during a setup change, along direction (UI - d l ,  -d2) during 
the production of Part Type 1 or along direction ( -d l ,  U2 -d2) during the produc- 
tion of Part Type 2. Therefore, the Limit Cycle cannot be reached from below (i.e., 
from points in Region ~u) in finite time. To be able to touch the Limit Cycle in a 
finite time, starting in Region ~ ' ,  we should bring the surplus levels in Region ~u, 
then apply the optimal control actions of that Region (since we know that those 
controls lead to the Limit Cycle in finite time). Doing so will generate a surplus 
excess of either part type. To reach the Limit Cycle with the least amount of excess, 
we must bring the surplus levels to the boundary of Region ~ o (Line Lij = 1,2;j = 
1,2, i ~ j )  with minimum cost. Once on the boundary Lij, we switch to Part Typej 
and produce this part type (this corresponds to a trajectory moving along Line Lj) 
until the Limit Cycle is reached at Point D if j  = 1 or B i f j  = 2 (see Figure 6). The 
following fact formally states this result. 
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Fig. 7. D1 - 2-step and D2 - 2-step trajectories. 

FACT 4.4. To reach the Limit Cycle in finite time, starting with initial surplus levels 
in Region ~u,  the trajectory leading to the Limit Cycle must touch the boundary 
Lij  of Region ~o, just before switching to Part Typej  and reaching the Limit Cycle 
at one of the points B or D on the Limit Cycle. 

DEFINITION 4.3.We say that a trajectory is following Direction Di,  if it moves 
parallel to Line Li (see Figure 2) in the direction of increasing x~. That is, the 
machine is producing Part Type i (i = 1,2). 

REMARK. Since for surplus levels in Region ~"  the machine always produces 
at its maximum rate, the trajectories will move either along Direction D1 or along 
Direction D2. 

DEFINITION 4.4. We call a direction Di - n-step trajectory (i = 1,2; n > 1), a 
trajectory that performs alternately mi setup change-production runs of Part Type 
i and m j  setup change-production runs of Part Typej  (j ~ i)); with the initial setup 
change to Part Type i and the last segment touching the Limit Cycle at point B 
or D. If n is even then mi = mj  = n/2. If n is odd then mi = (n + 1)/2 and mj = 
(n - 1)/2. Figure 7 shows a D1 - 2-step, and a D2 - 2-step trajectory. 
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We can now state the problem as follows: Given surplus levels in Region ~u, 
find a Di, - n*-step trajectory, that minimizes the cost of  reaching the Limit Cycle 
and satisfying constraints (1)-(7). Where n* is the optimal number of steps (setup 
change-production runs) before reaching the Limit Cycle and i* is the first direction 
to follow (i.e., the initial setup change). 

As a consequence of Facts 4.3 and 4.4, the optimal trajectory leading to the Limit 
Cycle in finite time will be at least Di -2-step. Since, we need a setup change at 
the initial point and one more, once the boundary of Region ~ o is reached. This 
leads to the following proposition. 

PROPOSITION 4.1. Let Cni(x) (i = 1,2) be the cost of moving along a Di - n-step 
trajectory with initial surplus point x in surplus space. An upper bound on the 
optimal cost of  reaching the Limit Cycle is given by mini=l,2{ C2(x)}. 

Proof. The proof is straight forward and is based on Facts 4.3 and 4.4. Assume 
that the optimal trajectory with initial point x is Di, - n*-step (n * > 2). We know 
that an optimal trajectory originating at the point x in surplus space is at least Di - 
2-step. It follows that, 

C~**(x) < C2(x) and c~*(x) < C2(x). Therefore, C~**(x) < min{C2(x)}.  
- -  - -  - -  i = 1 , 2  

Based on Facts 4.3 and 4.4, The optimal trajectory emanating at a point in Region 
~u, and leading to the Limit Cycle in finite time can be obtained as follows: Given 
an initial surplus point in Region ~u, we choose the first setup and calculate the 
cost of the trajectory leading to the Limit Cycle with two setup changes only. At 
this point, we have a Di - 2-step trajectory, where i is the initial setup for Part Type 
i. The next step is to try to lower the cost of the current trajectory by introducing 
a setup change to the other part type so that the Limit Cycle is reached at the 
opposite side. If the cost can be reduced, then the obtained new trajectory is a Di 
- 3-step trajectory. We keep trying to reduce the cost of the current trajectory by 
introducing, each time, a setup change before the Limit Cycle is reached, until 
we cannot lower the cost anymore. At this point we have an optimal Di - n-step 
trajectory (provided we start with a setup change to Part Type i) emanating in 
Region ~u and reaching the Limit Cycle in finite time. In the same manner, we 
obtain the optimal Dj - n-step (j ~ i) trajectory starting with a setup to Part Type 
j first. The optimal trajectory would be the one with the lowest cost. The above 
procedure leads to the following algorithm which is called Direction Sweeping 
Algorithm (DSA). The reason for this will be given shortly. 

4.2.0.1. Direction Sweeping Algorithm 
Notation: 

x(0): Initial surplus in x-space (Input); 
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{x(0), x (1) , . . . ,  x(k)}: Optimal trajectory (Output); 
Jz : Optimal trajectory cost (Output); 
C(x(k)): Cost of the trajectory up to the point x(k); 
Cgm(Y~ Z): Cost along Segment [Y,Z]. 
Dr: Direction of search. Dr=D1 or Dr=D2 as defined in Definition 4.3. 
/ ) r= l  if Dr=2 and 1)r=2 ifDr=l. 
C~) r (X): Cost of Dr-n-step trajectory starting at the point X in x-space. 
I ( X,  Dr): Intersection point of the line containing X and with direction Dr, with 

Line LDr15r, where LDrDr -- L12 or LDrDr -- L21, depending on the direction of 
search Dr. 

PDr : P1 = 13 and P2 = D. B and D are given by equation (32) in Section 
3. 

Main Algorithm: 
//Initialization; 
k : =  1; 
r a : =  1; 
STOP:=FALSE; 
/ / F i n d  an upper bound on the cost of the optimal trajectory emanating from 

x(O): 
(J~,Dr) " minDr=l,z{C2Dr(X(O))}; 
/ /Update trajectory: 
k : = k + l ;  
x_(k) := x ( k -  1)+5*Dr( -d l , -d : ) ;  
Dr := notDr; 
/ /Update trajectory cost up to the point x(k): 
c(x(k)) : =  cg (x(k - 1 ) , x ( k ) ) ;  
WHILE STOP ~ TRUE 
DO 
Swap(Dr, Dr); 
/ / A d d  a new step to the trajectory: 
(C2Dr(Y (m) ), Y (m) ) := minye[x(k)j(x(k),Dr)]{C~r(Y)+Cgm(x(k), Y,/)r)};  

/ /This  is a Line Search Procedure. 
IF C(x(k)) + Cgm(x(k),  Y(m))  + C2r(Y(m)) < Jx  THEN 
/ /Update trajectory: 
k : = k + l ;  
x(k) := Y(m); 
k : = k + l ;  
x(k) := z(k - 1) + ~g r ( -d , , - d2 ) ;  
//Update upperbound on the optimal cost; Jx  := C (x( k ) ) + C gm(x( k ), Y (m) ) 

/ /Update trajectory cost up to the point x(k); 
C(x(k)) := C(x(k)) + Cgm(x(k  - 2),x(k - 1)) + Cgm(x(k - 1), x(k)); 
ELSE 



374 SHERMAN X. BAI AND MOHSEN ELHAFSI 

/ /Cannot  add another step to the current trajectory. 
/ /Then  the trajectory x(k) is optimal. 
STOP:= TRUE; 
END 
END DO 
Swap(Dr,/)r); 
k : = k + l ;  
x(k) := ~r(x(k),Dr); 
k : = k + l ;  
x(k) := x(k - 1) + 6~r(-d l , -d2);  
k : = k + l ;  
x(k) := Pnr 
/ /Optimal trajectory cost: 

: =  Jx; 
Notice, each time we try to add a new step to the current trajectory, we sweep 

all possible trajectories in the direction of search and pick the one that minimizes 
the cost of reaching the Limit Cycle (this is done by means of the line search 
procedure). This is why the algorithm is called Direction Sweeping Algorithm. 

The numerical solution of various examples suggests that the above algorithm 
be further simplified based on the following Conjecture. 

CONJECTURE 4.1. The initial setup of the optimal trajectory is given by i* = 
argmini= l ,2 { C2i (x)}. 

Conjecture 4.1 implies that, we only need to compare two D i - 2 - s t e p  trajectories 
instead of comparing two D i  - n - s t e p  trajectories. Which is simpler and faster to 
compute. 

In the following, we prove the validity of the line search and the uniqueness of 
its solution. For this, we use the algorithm notation. 

PROPOSITION 4.2. The cost function C2Dr(X) is strictly convex in x E [x(k), 
~r(x(k), ZSr)]. 

Proof. Let 

C~r(X)--Cgm(x , x', O) + Cgm(x',  I(x' ,  Dr), Dr) 

+Cgm( I(x' ,  Dr), x", O) + Cgm(x", PzSr, 1)r), 

where Cgm(X, Y,l) is the cost of Segment [X,Y] when direction l is followed. Here, 
direction 0 is the South-West direction. In other words the machine is undergoing 
a setup change. In general, we can write the cost along Segment [X,Y] in x-space 
as follows: 

2 1 hi 
Cgm(S ,  Y, l) = ~ ~ (ailfi "--- di) [y~ - x~}; 

i = t  
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Fig. 8. Optimal trajectory obtained by the DSA algorithm. 

Where, X = ( X l , X 2 )  , Y= (Yl,Y2) and h i = c+i ifxi andyi are positive and hi = - c - i  
if xi and Yi are negative for i = 1,2. 

Now, if Yis fixed, then it is easy to show Cgm(X, Y,l) is a strictly convex function 
of X. 

In particular, Cgm(z", P15r, Or) is a strictly convex function of x" for fixed 
POt (recall that P b r  is either point B or point D given by (31)). Since x" can be 
expressed as a linear function of P13r, C9m ( I(x' ,  Dr), z", O)+ C9m(z  ", PzS~, iSr) 
is a strictly convex function of l(x',Dr) for fixed PO~. Continuing the reasoning in 
the same manner, and since the domain [z(k), I(z(k), /St)] is convex, it follows 
that CZDr(X) is a strictly convex function of z E [z(k), I(x(k),/Sr)]. I 

Using Proposition 4.2, it follows that the line search in the algorithm always 
provides a unique optimal solution. 

THEOREM 4.2. The DSA algorithm gives a unique optimal trajectory with the 
optimal cost cm*i, (x(O)), where x(O) is the initial point of the trajectory in x- 
space, m* is the optimal number of steps in the trajectory and i* is the initial 
direction to follow. 

Proof. To see that the trajectory obtained by the DSA is indeed optimal, consider 
an initial point x(0). Then, the DSA algorithm can be described by the following 
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Fig. 9. Linearity of  the Boundaries in Region ~ ~'. 

10 

recursive expression: 

C~,(x(0)) = min{C~(x(0))};  
i=1,2 

( z ( 0 ) )  = 

min ~C~. (x(O)); min {C(Y )+C 2 (Y)}} ; 
[ YC[x(2m-3),I(x(2m-3),im)] zm 

where m=2,3 ..... m*; il = /~ ,  i2 = i*, i3 = 3*, . . .  ; i* is the starting direction of 
search, Cmi, (x(0)) is the cost of the Di*-m-step trajectory and C(Y) is the cost of the 
current trajectory up to point Y. The remaining quantities are the same as defined 
by the algorithm. The recurrence relation above and Proposition 4.2 guarantee 
that each step added to the trajectory is optimal. Therefore, by the principle of 
optimality, the trajectory obtained is optimal. Furthermore by Proposition 4.2 the 
optimal trajectory is unique. • 

Figure 8 shows an optimal trajectory starting at the point (-10,-10) for the fol- 
lowing problem data: dl = 2, d2 = 3, U~ = 6, U2 = 6, 51 = 2, 52 = 1, c+2 = 10, c+2 = 
10, c -  1 = 50, and c-2 = 50. Notice that, the optimal trajectory is DL --5-step. Figure 
9 shows different optimal trajectories starting at different initial points. Notice that 
the setup switching policy is a special corridor policy. The latter has linear walls, 
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which means that the boundaries in Region Nu are linear as mentioned in Fact 
4.2. 

5. Conclusion 

In this paper, we studied a deterministic one-machine two-product manufacturing 
system with setup changes. We formulated the problem as an optimal control. 
We divided the planning horizon into a transient period and a steady-state period. 
For the steady-state period, the optimal setup switching schedule and production 
flow rates were derived. For the transient period, the surplus/backlog space was 
divided into two major Regions No and Nu. For initial surplus levels in Region 
No, the optimal solution was obtained by inspection. For initial surplus levels in 
Region ~u, an algorithm to obtain the optimal state trajectory was developed. The 
algorithm involves only a line search procedure, which makes it very fast. The 
complete optimal solution is a feedback control policy. 

In this paper, we dealt with a deterministic problem. A stochastic version of this 
problem, with random production capacities, can be considered as an extension 
of this work. Moreover, fixed setup costs can be introduced in addition to setup 
times. In this case, we suspect that the Limit Cycle will have a completely different 
structure. 
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